Telegram Group & Telegram Channel
Пространство смыслов или как мыслит ИИ

tldr: он не использует слова, вместо них - вектора в 1000-мерном пространстве

Возможно, вы уже успели убедиться, что современный ИИ прекрасно воспринимает текстовую информацию — он "понимает" все, что вы ему напишете и "рассуждает" на уровне образованного собеседника. Однако удивительно мало внимания уделяется тому, как ИИ информацию обрабатывает и как образы, выраженные словами, превращаются в понятные машине нули и единицы. Серия постов, где я вместе с вами разбираюсь в возможностях и ограничениях GPT-подобных систем.

Начнем с того как воспринимаем информацию мы. Сознание человека привыкло оперировать словами и связанными с ними образами, позволяя нам складывать конструкции более высоких уровней абстракции. При этом помимо внутренней логики языка, мы осознаем логики причинно-следственных связей, эмоций и чувств, времени и пространства, звука, цвета и так далее. То есть наше сознание хотя и тексто-центрично, языком не исчерпывается (хотя философы на эту тему спорят).

ИИ не такой, кроме текста он не знает вообще ничего и только-только начинает добавлять в свою картину мира изображения. То есть он не понимает категории времени, но помнит все, что о времени было написано, например, с какой вероятностью после слова “время” встречается слово “идёт”, а с какой — “песок, время вода, скажи мне да”. И хотя интерфейсы для нашего взаимодействия с ИИ — это по сути слова, все расчеты в нейронных сетях сводятся к числам. Основой для "понимания" языка у ИИ являются не буквы и слова, а т.н. вектора в многомерном пространстве смыслов (vector embeddings). Поэтому при каждом запросе текст переносится в это пространство смыслов специального типа функцией (word2vec). Эту операцию можно представлять переводом с любого из человеческих языков на язык ИИ. В частном случае openAI у этого пространства 1536 измерений, у google - 768, но это детали. Главное здесь:

1. вектора в этом пространстве описывают все понятия и явлении, которые только могут быть выражены в языке
2. в том что для трехмерного сознания кожаных мешков размерность любого из этих пространств достаточно большое, чтобы не суметь осознать его примерно никогда. привет всем, кто пытался представить 4-мерый куб.
3. несмотря на семантическую природу пространства и привязку к языку, все операции над текстов сводятся к математическим операциям над векторами. их можно складывать и это равносильно сложению смысла слов в предложениях, или умножать — их скалярное произведение описывает, насколько два текста на любом из человеческих языков близки по смыслу между собой. причем для таких расчетов машине больше не нужно ничего "понимать", нужно (заткнуться) и считать.

Например, так выглядит слово “кот” в гугловском пространстве, определенном функцией BERT (фото 1).
Каждая координата этого вектора - число с плавающей точкой (float), которое уже записывается в память компьютера и занимает там 4 байта.
- Каждый такой вектор занимает 4 байта х размерность 768 = 3 кБ
- При этом слово занимает 2 байта на символ UTF-8 х 3 буквы в слове “кот” = 6 Б

Разница в 500 раз. Векторная запись одного слова занимаете памяти как целая страница текста. Дело в том, что помимо самого слова в нем хранится информация о понятии “кот” — сколько у него лап, какие он издает звуки и все, что нашлось в обучающей выборке, точнее какие слова встречались рядом со словом "кот" в текстах обучающей выборки .

Чудо в том, что после всех операций и обратной конвертации этих векторов на человеческий, получаются тексты связные не только на уровне последовательностей слов, но и на уровне причинно-следственных связей, о которых машина не имеет никакого представления. И чудо это заключено в конкретном способе трансформации текста в векторы, в количестве измерений и различных способах оптимизации. И уже существующие способы, хотя и хороши, все еще может быть улучшены значительно (до 40%). И это одна из точек активного приложения усилий ИИ-исследователей прямо сейчас.

1. Демо - уровень абстракции #1 - скрины отсюда ниже
2. Как работает Google BERT
3. Документация openAI

#AI #language



tg-me.com/levels_of_abstraction/11
Create:
Last Update:

Пространство смыслов или как мыслит ИИ

tldr: он не использует слова, вместо них - вектора в 1000-мерном пространстве

Возможно, вы уже успели убедиться, что современный ИИ прекрасно воспринимает текстовую информацию — он "понимает" все, что вы ему напишете и "рассуждает" на уровне образованного собеседника. Однако удивительно мало внимания уделяется тому, как ИИ информацию обрабатывает и как образы, выраженные словами, превращаются в понятные машине нули и единицы. Серия постов, где я вместе с вами разбираюсь в возможностях и ограничениях GPT-подобных систем.

Начнем с того как воспринимаем информацию мы. Сознание человека привыкло оперировать словами и связанными с ними образами, позволяя нам складывать конструкции более высоких уровней абстракции. При этом помимо внутренней логики языка, мы осознаем логики причинно-следственных связей, эмоций и чувств, времени и пространства, звука, цвета и так далее. То есть наше сознание хотя и тексто-центрично, языком не исчерпывается (хотя философы на эту тему спорят).

ИИ не такой, кроме текста он не знает вообще ничего и только-только начинает добавлять в свою картину мира изображения. То есть он не понимает категории времени, но помнит все, что о времени было написано, например, с какой вероятностью после слова “время” встречается слово “идёт”, а с какой — “песок, время вода, скажи мне да”. И хотя интерфейсы для нашего взаимодействия с ИИ — это по сути слова, все расчеты в нейронных сетях сводятся к числам. Основой для "понимания" языка у ИИ являются не буквы и слова, а т.н. вектора в многомерном пространстве смыслов (vector embeddings). Поэтому при каждом запросе текст переносится в это пространство смыслов специального типа функцией (word2vec). Эту операцию можно представлять переводом с любого из человеческих языков на язык ИИ. В частном случае openAI у этого пространства 1536 измерений, у google - 768, но это детали. Главное здесь:

1. вектора в этом пространстве описывают все понятия и явлении, которые только могут быть выражены в языке
2. в том что для трехмерного сознания кожаных мешков размерность любого из этих пространств достаточно большое, чтобы не суметь осознать его примерно никогда. привет всем, кто пытался представить 4-мерый куб.
3. несмотря на семантическую природу пространства и привязку к языку, все операции над текстов сводятся к математическим операциям над векторами. их можно складывать и это равносильно сложению смысла слов в предложениях, или умножать — их скалярное произведение описывает, насколько два текста на любом из человеческих языков близки по смыслу между собой. причем для таких расчетов машине больше не нужно ничего "понимать", нужно (заткнуться) и считать.

Например, так выглядит слово “кот” в гугловском пространстве, определенном функцией BERT (фото 1).
Каждая координата этого вектора - число с плавающей точкой (float), которое уже записывается в память компьютера и занимает там 4 байта.
- Каждый такой вектор занимает 4 байта х размерность 768 = 3 кБ
- При этом слово занимает 2 байта на символ UTF-8 х 3 буквы в слове “кот” = 6 Б

Разница в 500 раз. Векторная запись одного слова занимаете памяти как целая страница текста. Дело в том, что помимо самого слова в нем хранится информация о понятии “кот” — сколько у него лап, какие он издает звуки и все, что нашлось в обучающей выборке, точнее какие слова встречались рядом со словом "кот" в текстах обучающей выборки .

Чудо в том, что после всех операций и обратной конвертации этих векторов на человеческий, получаются тексты связные не только на уровне последовательностей слов, но и на уровне причинно-следственных связей, о которых машина не имеет никакого представления. И чудо это заключено в конкретном способе трансформации текста в векторы, в количестве измерений и различных способах оптимизации. И уже существующие способы, хотя и хороши, все еще может быть улучшены значительно (до 40%). И это одна из точек активного приложения усилий ИИ-исследователей прямо сейчас.

1. Демо - уровень абстракции #1 - скрины отсюда ниже
2. Как работает Google BERT
3. Документация openAI

#AI #language

BY уровни абстракции


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/levels_of_abstraction/11

View MORE
Open in Telegram


LEVELS_OF_ABSTRACTION Telegram Group Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

LEVELS_OF_ABSTRACTION Telegram Group from cn


Telegram уровни абстракции
FROM USA